
CHAPTER 1

INTRODUCTION TO PROGRAMMING
Problem Solving Concepts, Flowcharting, and Programming Languages

It is the intent of this manual to provide an introduction to computer
programming, and to the programming language, BASIC (Beginners All-
Purpose Symbolic Instruction Code). BASIC is a popular programming
language, especially for new programmers and casual computer users. Its
conversational nature makes communicating with computers natural, simple,
and straightforward. Its use of near English words and mathematical
expressions gives the coding a familiar appearance. Also, its original design,
to teach the casual user how to program, makes it a good language to learn first.

For those of you with computer operations experience, this course is
intended to provide a transition from operations into programming. It will intro-
duce concepts of programming that apply to other languages as well as BASIC.

For those of you with programming experience, it will provide a review of
programming concepts and introduce the capabilities of BASIC and its syntax.

For those not in data processing, who have a computer available, it will pro-
vide an introduction to a programming language available on most computers.

When you complete the course, you should understand the capabilities
and syntax of the BASIC language and be able to write a program.

OVERVIEW OF PROGRAMMING

Before learning to program in the language, BASIC, it is helpful to establish
some context for the productive part of the entire programming effort. This
context comprises the understanding and agreement that there are four funda-
mental and discrete steps involved in solving a problem on a computer.

The four steps are:

1. State, analyze, and define the problem.
2. Develop the program logic and prepare a program flowchart or

decision table.
3. Code the program, prepare the code in machine readable form,

prepare test data, and perform debug and test runs.
4. Complete the documentation and prepare operator procedures for

implementation and production.

Figure 1-1 depicts the evolution of a program.
Programming can be complicated, and advance preparation is required

before you can actually start to write or code the program. The first two steps,
problem understanding/definition and flowcharting, fall into the advance
planning phase of programming. It is important at this point to develop

1-1

INTRODUCTION TO PROGRAMMING IN BASIC

Figure 1-1.—Evolution of a Program.

1-2

Chapter l—INTRODUCTION TO PROGRAMMING

correct habits and procedures, since this will prevent later difficulties in pro-
gram preparation.

Whether you are working with a systems analyst, a customer, or solving
a problem of your own, it is extremely important that you have a thorough
understanding of the problem.

Every aspect of the problem must be defined:

. What is the problem?

@ What information (or data) is needed?

. Where and how will the information be obtained?

. What is the desired output?

Starting with only a portion of the information, or an incomplete
definition, will result in having to constantly alter what has been done to
accommodate the additional facts as they become available. It is easier and
more efficient to begin programming after all of the necessary information
is understood. Once you have a thorough understanding of the problem, the
next step is flowcharting.

FLOWCHARTING

Flowcharting is one method of pictorially representing a procedural (step-
by-step) solution to a problem before you actually start to write the computer
instructions required to produce the desired results. Flowcharts use different
shaped symbols connected by one-way arrows to represent operations, data,
flow, equipment, and so forth.

There are two types of flowcharts, system (data) flowcharts and
programming flowcharts. A system (data) flowchart defines the major phases
of the processing, as well as the various data media used. It shows the rela-
tionship of numerous jobs that makeup an entire system. In the system (data)
flowchart, an entire program run or phase is always represented by a single
processing symbol, together with the input/output symbols showing the path
of data through a problem solution. For example:

System Flowchart

1-3

INTRODUCTION TO PROGRAMMING IN BASIC

The second type of flowchart, and the one we’ll use in this manual is the
programming flowchart. It is constructed by the programmer to represent the
sequence of operations the computer is to perform to solve a specific
problem. It graphically describes what is to take place in the program. It
displays specific operations and decisions, and their sequence within the pro-
gram. For example:

Tools of Flowcharting

Flowcharting has been defined, and two different types of flowcharts
discussed. We will now take a look at the tools used in flowcharting. These
tools are the fundamental symbols, graphic symbols, flowcharting template,
and the flowcharting worksheet.

FUNDAMENTAL SYMBOLS.—To construct a flowchart, it is first
necessary to know the symbols and their related meanings. They are
standard for the military, as directed by Department of the Navy Automated
Data Systems Documentation Standards, SECNAVINST 5233.1 (Series).

1-4

Chapter l—INTRODUCTION TO PROGRAMMING

Symbols are used to represent functions. These fundamental functions are
processing, decision, input/output, terminal, flow lines and connector
symbol. All flowcharts may be initially constructed using only these funda-
mental symbols as a rough outline to work from. Each symbol corresponds
to one of the functions of a computer and specifies the instruction(s) to be
performed by the computer. The contents of these symbols are called
statements. Samples of these fundamental symbols, definitions, examples, and
explanations of their uses are shown in figure 1-2.

GRAPHIC SYMBOLS.—Within a flowchart, graphic symbols are used
to specify arithmetic operations and relational conditions. The following are
commonly-used arithmetic and relational symbols.

FLOWCHARTING TEMPLATE.—To aid in drawing the flowcharting
symbols, you may use a flowcharting template. Figure 1-3 shows a template
containing the standard symbol cutouts. A template is usually made of plastic
with the symbols cut out to allow tracing the outline.

1-5

INTRODUCTION TO PROGRAMMING IN BASIC

SYMBOL DEFINITION

PROCESS SYMBOL is used to
represent general processing func-
tions not represented by other
symbols. It depicts the process of
operations resulting in a change of
value, form, or location of
information.

INPUT/OUTPUT SYMBOL is
used to represent any function of
an I/O device. Making informa-
tion available for processing is an
Input function; recording proc-
essed information is an Output
function.

DECISION SYMBOL is used to
depict a point in a program at
which a branch to one of two or
more alternate paths is possible.

TERMINAL, INTERRUPT
SYMBOL represents a terminal
point in a flowchart, for example,
start, stop, halt, delay, or inter-
rupt.

CONNECTOR SYMBOL repre-
sents a junction in a line of flow
to another part of the flowchart.
A common identifier, such as an
alphabetic character, number, or
mnemonic label, is placed within
the exit and its associated entry.

FLOWLINE SYMBOL is used to
represent flow direction by lines
drawn between symbols. Normal
direction of flow is left to right
and top to bottom. If the direc-
tion of flow is other than normal,
arrowheads are required at the
point of entry.

EXAMPLE EXPLANATION

Divide I by 12 assign value to
R.

Enter these values through the
terminal, store in locations B,
D, I.

If A is NOT equal to B, take
NO branch.

If A is equal to B, take YES
branch.

START/STOP flow chart at
this point.

This represents the EXIT point
and the ENTRY point in a
flowchart.

Initial processing is shown here.
If the NO branch is taken, the
processing block is performed
again.

If the YES branch is taken, the
INPUT/OUTPUT operation is
performed.

Figure 1-2.—Fundamental Flowcharting symbols.

1-6

Chapter l–INTRODUCTION TO PROGRAMMING

Figure 1-3.—Flowchart Template.

FLOWCHART WORKSHEET.—The Flowchart Worksheet is a means
of standardizing documentation. It provides space for drawing programming
flowcharts and contains an area for identification of the job, including
application, procedure, date and page numbers (fig. 1-4). You may find it
helpful when you develop flowcharts. If you don’t have this form available,
a plain piece of paper will do.

Constructing a Flowchart

There is no “best way” to construct a flowchart. There is no way to stand-
ardize problem solution. Flowcharting and programming techniques are often
unique and conform to the individual’s own methods or direction of problem
solution.

This manual will show an example of developing a programming flowchart.
It is not the intent to say this is the best way; rather, it is one way to do it.

By following this text example you should grasp the idea of solving
problems through flowchart construction. As you gain experience and
familiarity with a computer system, these ideas will serve as a foundation.

In order to develop a flowchart, you must first know what problem you
are to solve. It is then your job to study the problem definition and develop
a flowchart to show the logic, steps, and sequence of steps the computer is
to execute in order to solve the problem.

As an example, suppose you have taken a short-term second mortgage
on a new home, and you want to determine what your real costs will be: the
amount of interest; the amount to be applied to principal; and the final
payment at the end of the three year loan period.

1-7

INTRODUCTION TO PROGRAMMING IN BASIC

Figure 1-4.—Flowchart Worksheet.

1-8

Chapter l—INTRODUCTION TO PROGRAMMING

The first step is to be sure you understand the problem completely—What
are the inputs and the outputs and what steps are needed to answer the
questions? Even when you are specifying a problem of your own, you’ll find
we don’t usually think in small detailed sequential steps. But, that is exactly
how a computer operates; one step after another in a specified order.
Therefore, it is necessary for you to think the problem solution through step-
by-step. You might clarify the problem as shown by the Problem Definition
in figure 1-5.

After you have this level of narrative problem definition, you are ready
to develop a flowchart showing the logic, steps, and sequence of steps you
want the computer to execute in order to solve the problem. A programming
flowchart of this problem is also shown in figure 1-5.

You now have a plan of what you want the computer to do. The next
step is to code a program that can be translated by a computer into a set of
instructions it can execute. This step is called program coding.

PROGRAM CODING

It is important to remember program coding is not the first step of
programming. Too often we have a tendency to start coding too soon. As
we discussed earlier, there is a great deal of planning and preparation to be
done prior to sitting down to code the computer instructions to solve a
problem. For the example amortization problem (fig. 1-5), we have analyzed
the specifications in terms of (1) the output desired; (2) the operations and
procedures required to produce the output; and (3) the input data needed.
In conjunction with this analysis, we have developed a programming flowchart
which outlines the procedures for taking the input data and processing it into
usable output. You are now ready to code the instructions that will control
the computer during processing. This requires that you know a programming
language.

Before getting into the specific programming language called BASIC, it
may be helpful to have a greater understanding of programming languages
in general.

All programming languages are composed of instructions that enable the
computer to process a particular application, or perform a particular
function.

Instructions

The instruction is the fundamental element in program preparation. Like
a sentence, an instruction consists of a subject and a predicate. However, the
subject is usually not specifically mentioned; rather it is some implied part
of the computer system directed to execute the command that is given. For
example, the chief tells a sailor to “dump the trash.” The sailor will interpret
this instruction correctly even though the subject “you” is omitted.
Similarly, if the computer is told to, “ADD 1234,” the control unit may
interpret this to mean that the arithmetic-logic unit is to add the contents of
address 1234 to the contents of the accumulator.

In addition to an implied subject, every computer instruction has an ex-
plicit predicate consisting of at least two parts. The first part is referred to
as the command, or operation; it answers the question “what?. ” It tells the

1-9

INTRODUCTION TO PROGRAMMING IN BASIC

PROBLEM DEFINITION

MORTGAGE AMORTIZATION—This program is to determine
the monthly amount of interest (A) and amount applied to the
principal (P) of the mortgage giving the balance (B) at the end of
a thirty-six month period.

INPUT: The monthly payment is to be entered as variable D, the
beginning balance of the mortgage is to be entered as variable B,
and the annual interest rate is to be entered as variable I. This
input is to be entered into the system via the terminal.

OUTPUT: The end result is to be a listing displaying the amount
applied to principal and interest and the current loan balance each
month, with one final entry showing the final payment on the
mortgage.

Figure 1-5.—Problem Definition and Programming Flowchart.

1-10

Chapter l—INTRODUCTION TO PROGRAMMING

computer what operation it is to perform; i.e., read, print, inpit. Each machine
has a limited number of built-in operations that it is capable of executing.
An operation code is used to communicate the programmer’s intent to the
computer.

The second specific part of the predicate, known as the operand names
the object of the operation. In general, the operand answers the question
“where?.” Operands may indicate the following:

1. The location where data to be processed is found.
2. The location where the result of processing is to be stored.
3. The location where the next instruction to be executed is found. (When

this type of operand is not specified, the instructions are executed in sequence.)

The number of operands and the structure or format of the instructions
vary from one computer to another. However, the operation always comes
first in the instruction and is followed by the operand(s). The programmer
must prepare instructions according to the format required by the language
and the computer to be used.

Instruction Set

The number of instructions in a computer’s instruction set may range from
less than 30 to more than 100. These instructions may be classified into
categories such as input/output (I/O), data movement, arithmetic, logic, and
transfer of control. Input/output instructions are used to communicate
between I/O devices and the central processor. Data movement instructions
are used for copying data from one storage location to another and for
rearranging and changing of data elements in some prescribed manner.

Arithmetic instructions permit addition, subtraction, multiplication, and
division. They are common in all digital computers. Logic instructions allow
comparison between variables, or between variables and constants. Transfer
of control instructions are of two types, conditional or unconditional.
Conditional transfer instructions are used to branch or change the sequence
of program control, depending on the outcome of the comparison. If the out-
come of a comparison is true, control is transferred to a specific statement
number; if it proves false, processing continues sequentially through the
program. Unconditional transfer instructions are used to change the sequence
of program control to a specified program statement regardless of any
condition.

Programming Languages

Programmers must use a language that can be understood by the
computer. There are several methods that can achieve human-computer
communication. For example, let us assume the computer only understands
French and the programmer speaks English. The question arises: How are
we to communicate with the computer? One approach is for the programmer
to code the instructions with the help of a translating dictionary prior to
giving them to the processor. This would be fine so far as the computer is
concerned; however, it would be very awkward for the programmer.

1-11

INTRODUCTION TO PROGRAMMING IN BASIC

Another approach is a compromise between the programmer and
computer. The programmer first writes instructions in a code that is easier
to relate to English. This code is not the computer’s language; therefore, it
does not understand the orders. The programmer solves this problem by
giving the computer another program, one that enables it to translate the
instruction code into its own language. This translation program, for
example, would be equivalent to an English-to-French dictionary, leaving the
translating job to be done by the computer.

The third and most desirable approach from an individual’s standpoint,
is for the computer to accept and interpret instructions written in everyday
English terms. Each of these approaches has its place in the evolution of
programming languages and is used in computers today. The first approach
is known as machine language, the second as symbolic, and the third as
procedure-oriented.

MACHINE LANGUAGES.—With early computers, the programmer had
to translate instructions into the machine language form that the computers
understood. This language was a string of numbers that represented the
instruction code and operand address(es).

In addition to remembering dozens of code numbers for the instructions
in the computer’s instruction set, the programmer also had to keep track of
the storage locations of data and instructions. This process was very time
consuming, quite expensive and often resulted in errors. Correcting errors
or making modifications to these programs was a very tedious process.

SYMBOLIC LANGUAGES.—In the early 1950s, mnemonic instruction
codes and symbolic addresses were developed. This improved the program
preparation process by substituting letter symbols (mnemonic codes) for basic
machine language instruction codes. Each computer has mnemonic code,
although the symbols vary among the different makes and models of
computers. The computer still uses machine language in actual processing,
but it translates the symbolic language into machine language equivalent.
Symbolic languages have many advantages over machine language coding in
that less time is required to write a program, detail is reduced, and fewer
errors are made. Errors which are made are easier to find, and programs are
easier to modify.

PROCEDURE-ORIENTED LANGUAGES.—The development of
mnemonic techniques and macroinstructions led to the development of
procedure-oriented languages. These languages are oriented toward a specific
class of processing problems. A class of similar problems is isolated, and a
language is developed to process these types of applications. Several languages
have been designed to process problems of a scientific-mathematical nature
and others that emphasize file processing. The most familiar of these are
BASIC and FORTRAN for scientific or mathematical problems, and COBOL
for file processing.

Programs written in procedure-oriented languages, unlike those in
symbolic languages, may be used with a number of different computer makes
and models. This feature greatly reduces reprogramming expenses when
changing from one computer system to another. Other advantages to
procedure-oriented languages are: (1) they are easier to learn than symbolic

1-12

Chapter l—INTRODUCTION TO PROGRAMMING

languages; (2) they require less time to write; (3) they provide better documen-
tation; and (4) they are easier to maintain. However, there are some
disadvantages of procedure-oriented languages. They require more space in
memory and they process data at a slower rate than symbolic languages.

Coding a Program

Regardless of the language used, there are strict rules the programmer must
adhere to with regard to punctuation and statement structure when coding
any program. Using the programming flowchart introduced earlier, we have
now added a program coded in BASIC to show the relationship of the
flowchart to the actual coded instructions (fig. 1-6). Don’t worry about
complete understanding, just look at the instructions with the flowchart to
get an idea of what coded instructions look like.

You will have to have specific information about the computer you are
to use and how the language is implemented on that particular computer. The
computer manufacturers provide these specifics in their user’s manual. Get
a copy and study it before you begin to code. The differences may seem minor
to you, but they may prevent your program from running.

Once coding is completed, the program must be debugged and tested prior
to implementation.

Debugging

Errors caused by faulty logic and coding mistakes are referred to as “bugs.”
Finding and correcting these mistakes and errors that prevent the program
from running and producing correct output is called “debugging.”

Rarely do complex programs run to completion on the first attempt. Often,
time spent debugging and testing equals or exceeds the time spent in program
coding. This is particularly true if insufficient time was spent on problem
definition and logic development. Some common mistakes which cause
program bugs are: mistakes in coding punctuation, incorrect operation codes,
transposed characters, keying errors and failure to provide a sequence of
instructions (a program path) needed to process certain conditions.

To reduce the number of errors, you will want to carefully check the coding
sheets before they are turned in for keying. This process is known as “desk-
checking” and should include an examination for program completeness.
Typical input data should be manually traced through the program process-
ing paths to identify possible errors. In effect, you will be attempting to play
the role of the computer. After the program has been desk-checked for
accuracy, the program is ready to be assembled or compiled. Assembly and
compiler programs prepare your program (source program) to be executed
by the computer and they have error diagnostic features which detect certain
types of mistakes in your program. These mistakes must be corrected. Even
when an error-free pass of the program through the assembly or compiler
program is accomplished, this does not mean your program is perfected.
However, it usually means the program is ready for testing.

Testing

Once a program reaches the testing stage, generally, it has proven it will
run and produce output. The purpose of testing is to determine that all

1-13

INTRODUCTION TO PROGRAMMING IN BASIC

Figure 1-6.—Programming Flowchart and Coded Program.

1-14

Chapter l—INTRODUCTION TO PROGRAMMING

data can reprocessed correctly and that the output is correct. The testing
process involves processing input test data that will produce known results.
The test data should include: (1) typical data, which will test the commonly
used program paths; (2) unusual but valid data, which will test the program
paths used to process exceptions; and (3) incorrect, incomplete, or
inappropriate data, which will test the program’s error routines. If the pro-
gram does not pass these tests, more testing is required. You will have to
examine the errors and review the coding to make the coding corrections
needed. When the program passes these tests, it is ready for computer
implementation. Before computer implementation takes place, documenta-
tion must be completed.

Documentation

Documentation is a continuous process, beginning with the problem
definition. Documentation involves collecting, organizing, storing, and other-
wise maintaining a complete record of the programs and other documents
associated with the data processing system.

The Navy has established documentation standards to ensure completeness
and uniformity for computer system information between commands and
between civilian and Navy organizations. SECNAVINST 5233.1 (Series)
establishes minimum documentation requirements.

Local minimum documentation requirements are usually established by
the head of the data processing department/division. At most commands this
function is delegated to the project manager. The key to the minimum amount
of documentation required by local commands should be the amount that
is required for replacement personnel to understand input, processing, and
output for each program or system for which they will be responsible.

A documentation package should include:

1. A definition of the problem. Why was the program written? What
were the objectives? Who requested the program, and who approved it? These
are the types of questions that should be answered.

2. A description of the system. The system environment (hardware,
software, and organization) in which the program functions should be
described (including systems flowcharts). General systems specifications
outlining the scope of the problem, the form and type of input data to be
used, and the form and type of output required should be clearly defined.

3. A description of the program. Programming flowcharts, program
listings, program controls, test data and test results, storage dumps—these
and other documents that describe the program and give a historical record
of problems and/or changes should be included.

4. Operator instructions. Items that should be included are computer
switch settings, loading and unloading procedures, and starting, running, and
termination procedures.

Implementation

After the documentation has been completed, and the user has reviewed
and accepted the test output, the project request is submitted to upper manage-
ment, usually the ADP department head, for production approval. Once

1-15

INTRODUCTION TO PROGRAMMING IN BASIC

upper management has approved the program, it can be put into production.
If a program is to replace a program in an existing system, it is generally wise
to have a period of parallel processing; that is, the job application is
processed both by the old program and by the new program. The purpose
of this period is to verify processing accuracy and completeness.

Once the program is in production it maybe necessary to make modifica-
tions to the program to satisfy changing requirements. This is another
important duty of the programmer, and it is not unusual to find
programmers spending 25 percent of their time on this program maintenance
activity. In some installations, there are programmers who do nothing but
maintain production programs.

SUMMARY

The first step in the solution of any problem involves a fundamental but
often overlooked concept—a thorough understanding of the problem. The
second step in successful problem solving involves creating a flowchart showing
the steps required to solve the problem.

Flowcharting is a pictorial means of representing a procedural solution
to a problem in which different shaped symbols are used to represent opera-
tions, data, flow, equipment and so forth. There are two types of flowcharts—
system (data) and programming. The tools of flowcharting are: (1) fundamental
symbols; (2) graphic symbols; (3) flowcharting template; and (4) flowcharting
worksheet.

The problem definition and flowchart development steps must be done
prior to sitting down to code the computer instructions to solve a problem.
Regardless of the language used, there are strict rules you must adhere to with
regard to punctuation and statement structure when coding a program.

Once the program is coded, there are several phases that must be done
before it can be put into production. These are desk-checking, debugging,
testing, documentation and finally, implementation.

1-16

CHAPTER 1

EXERCISES

1. Arrange the following problem-solving steps in the correct sequence.

2 .

3 .

4 .

5 .

Draw the

Code the program, prepare the code in machine readable
form, prepare test data, and perform debug and test runs.

Develop the program logic and prepare a programming
flowchart or decision table.

Complete the documentation and prepare operator procedures
for implementation and production.

State, analyze, and define the problem.

flowcharting symbol that represents reading input data.

Refer to Figure 1-6. What block in the programming flowchart is equivalent
to line 110 of the coded program?

Draw the flowcharting symbol that is used to depict the evaluation of a
YES/NO, or TRUE/FALSE condition.

PROBLEM DEFINITION

SALES COMMISSION—This program is to determine the amount
of commission a salesperson is due.

INPUT: Amount of sales will be input as S and percent commission will
be input as P.

OUTPUT: The end result will be a listing, displaying amount of sales and
amount of commission.

Using this problem definition, draw a programming flowchart depicting
the programming steps required to solve the problem.

1-17

CHAPTER 1

EXERCISE ANSWERS

1. Problem-solving steps

Step 1.

Step 2.

Step 3.

State, analyze, and define the problem.

Develop the program logic and prepare a programming flowchart
or decision table.

Code the program, prepare the code in machine readable
form, prepare test data, and perform debug and test runs.

Step 4. Complete the documentation and prepare operator procedures for
implementation and production.

INPUT/OUTPUT SYMBOL

DECISION SYMBOL

1-18

Chapter l—INTRODUCTION TO PROGRAMMING

5. Sales Commission Flowchart

1-19

	CHAPTER 1

